

 Python Programming

Question 1.A) Explain the features and application areas of python
programming in detail.

Answer 1.A) Python, a high-level, interpreted language, is celebrated for its
simplicity, readability, and versatility. It boasts a clean and intuitive syntax that
enhances code comprehension and maintenance, making it an ideal choice for
beginners and experienced programmers alike. Python's key features include a rich
standard library, support for various programming paradigms, cross-platform
compatibility, and open-source accessibility.

Its extensive standard library accelerates development by offering modules for
diverse purposes, from web development with Django and Flask to data science and
machine learning via NumPy, Pandas, and Scikit-Learn. Python has carved a niche
in AI and scientific computing, with TensorFlow and PyTorch dominating deep
learning and SciPy aiding scientific research.

Furthermore, Python serves as a robust tool for automation, scripting, game
development (Pygame), and building desktop GUI applications (Tkinter, PyQt). It
powers IoT projects, web scraping tasks, financial applications, and educational
initiatives due to its adaptability and simplicity.

In essence, Python's adaptability, rich ecosystem, and active community contribute
to its prevalence across an array of industries and applications. Whether you're a data
scientist, web developer, AI researcher, or educator, Python provides the tools and
resources necessary to excel in your domain, making it one of the most popular and
versatile programming languages today.

Question 1.B) What are the different types of data types used in python
programming?
 Answer 1.B) Python supports several data types, categorized as follows:

1.Numeric Types:-These include integers (`int`), floating-point numbers (`float`),
and complex numbers (`complex`).

2.Sequence Types:- Python offers strings (`str`), which are sequences of characters;
lists (`list`), ordered and mutable collections; and tuples (`tuple`), ordered and
immutable collections.

3.Mapping Type:-The dictionary (`dict`) is an unordered collection of key-value
pairs.

4.Set Types:- Python has mutable sets (`set`) and immutable frozensets (`frozenset`)
for handling collections of unique elements.

5.Boolean Type:- Booleans (`bool`) represent True or False values and are
fundamental for logical operations.

6. Binary Types:-Python provides bytes and bytearrays to work with sequences of
bytes. Bytes are immutable, while bytearrays are mutable.

7.None Type:-The `None` type signifies the absence of a value, often used to
represent null values.

8.Sequence Types for Text:-Although strings were mentioned earlier, they are a
fundamental data type for representing text.

 SET - I

9. Type Conversion Types:- Python has built-in functions such as `int()`, `float()`,
`str()`, and `bool()` for converting between data types.

10.Custom Data Types:- Programmers can create custom data types using classes, a
core feature of Python's object-oriented programming.

These data types are essential for working with diverse data and structures
efficiently. Python's flexibility in handling data types, along with its simplicity and
readability, contributes to its widespread popularity across various domains, from
web development to data science and beyond. Understanding these data types is
crucial for effective Python programming and data manipulation.

Question 2.A) Explain membership and identity operators with example.
 Answer 2.A) In Python, membership and identity operators are used to test

relationships between values and objects. Here's an explanation of each type along
with examples:

1. Membership Operators:

Membership operators check whether a value or element is present within a
sequence, such as a string, list, tuple, or set. Python has two membership operators:

 in: Returns True if a value is found in the sequence.
 not in: Returns True if a value is not found in the sequence.

Using the 'in' operator

fruits = ['apple', 'banana', 'cherry']

print('banana' in fruits) # True, because 'banana' is in the list

Using the 'not in' operator

if 'orange' not in fruits:

 print('No oranges in the list') # This will be printed

2. Identity Operators:

Identity operators compare the memory locations of two objects to check if they are the
same object in memory. In Python, there are two identity operators:

 is: Returns True if two variables reference the same object in memory.

 is not: Returns True if two variables reference different objects in memory.

 x = [1, 2, 3]

y = x # y references the same list as x

Using the 'is' operator

print(x is y) # True, because x and y point to the same list

 Identity operators are particularly useful when you want to compare
whether two variables reference the exact same object in memory, while
membership operators are used to check if a value exists within a collection

Answer 2.B) The ̀ else` statement in Python is a valuable tool for adding
conditional behavior after the completion of `for` and `while` loops.

With a `for` loop, the `else` block is executed when the loop iterates
through all items in an iterable without encountering a `break`
statement. If a `break` statement is executed during the loop, the `else`
block is skipped.

In a ̀ while` loop, the ̀ else` block runs when the loop condition becomes
`False`, signifying that the loop terminated naturally without any
`break` statement intervening.

These `else` clauses provide a clean and readable way to express
conditions related to loop completion. For instance, you might use an
`else` block to execute a certain action if a specific item is not found in
a list (in the case of a ̀ for` loop) or to handle post-loop cleanup tasks (in
the case of a `while` loop).

By using ̀ else` with loops, you can write more structured and expressive
code, making it easier to convey your intentions and handle scenarios
that involve loop completion.

Question 2.B) Discuss the use of else statement with for and while loop.

Answer 3.A) ` remove()` function by creating a new list and adding elements to it
only if they haven't been added already. Here's a Python program to do that:
def remove_duplicates(input_list):
 # Create an empty list to store unique elements
 unique_list = []
 # Iterate through the input list
 for item in input_list:
 # If the item is not already in the unique list, add it
 if item not in unique_list:
 unique_list.append(item)
return unique_list

Example usage
original_list = [1, 2, 2, 3, 4, 4, 5]
result_list = remove_duplicates(original_list)

print("Original List:", original_list)
print("List with Duplicates Removed:", result_list)

Question 3.A) Write a program to delete duplicate elements from list
without using remove () function.

In this program:

We define a function remove_duplicates that takes an input list as its
parameter.

We create an empty list called unique_list to store the unique elements.

We iterate through the input list, and for each element, we check if it's
already in the unique_list. If not, we add it to the unique_list.

Finally, we return the unique_list containing only the unique elements.

When you run this program with the original_list, it will remove the
duplicates, and result_list will contain [1, 2, 3, 4, 5]. The original list remains
unchanged.

Answer 3.B) Lists, tuples, and sets are three fundamental data structures in Python,
each with distinct characteristics that make them suitable for different scenarios.
1. List:

 Mutability: Lists are mutable, meaning their contents can be modified after
creation.

 Syntax: Defined with square brackets [], and elements are separated by
commas.

 Order: Lists are ordered collections, preserving the order of elements based
on their insertion sequence.

 Duplicates: Lists allow duplicate elements.
 Access: Elements are accessed using zero-based indexing, e.g., my_list[0]

retrieves the first element.
 Use Cases: Lists are ideal for scenarios requiring a dynamic, ordered

collection that may change over time. They are well-suited for tasks like
maintaining a list of items, records, or data that needs modification.

2. Tuple:

 Immutability: Tuples are immutable, meaning their contents cannot be
altered once created.

 Syntax: Defined with parentheses (), and elements are separated by commas.
 Order: Like lists, tuples maintain element order based on insertion.
 Duplicates: Tuples can contain duplicate elements.
 Access: Elements are accessed through indexing, making them suitable for

data that shouldn't change.
 Use Cases: Tuples are used when you want to ensure data integrity and

immutability. They're suitable for storing data that should remain constant,
like coordinates, database records, or function return values.

Question 3.B) Explain the differences between list, tuple and set in detail.

3. Set:

 Mutability: Sets are mutable for adding and removing elements but not
indexable.

 Syntax: Defined with curly braces {} or using the set() constructor, with
elements separated by commas.

 Order: Sets are unordered collections; they don't maintain the order of
elements.

 Duplicates: Sets automatically eliminate duplicate elements.
 Access: Sets are not indexable, and elements cannot be accessed by index.
 Use Cases: Sets are useful for managing unique collections and performing

set operations like union, intersection, or difference. They are efficient for
membership testing and handling distinct elements in data.

In choosing between these data structures, consider your specific requirements,
including mutability, order, duplicates, and the need for unique elements, to make
the best choice for your programming task.

 Question 1.) “Hi, Python is very popular language”. Write a program to
count the number of uppercase, lowercase characters, special characters
and spaces in the above string

Answer 4.A)
Input string

input_string = "Hi, Python is very popular language"

Initialize count variables

uppercase_count = 0

lowercase_count = 0

special_char_count = 0

space_count = 0

Iterate through each character in the string

for char in input_string:

 if char.isupper():

 uppercase_count += 1

 elif char.islower():

 lowercase_count += 1

 elif char.isspace():

 space_count += 1

 else:

 special_char_count += 1

Print the results

print("Uppercase characters:", uppercase_count)

print("Lowercase characters:", lowercase_count)

print("Special characters:", special_char_count)

print("Spaces:", space_count)

Program Output look like
Uppercase characters: 2
Lowercase characters: 27
Special characters: 1
Spaces : 5

 SET - II

Question 4.B) Explain the ways of deleting an element from dictionaries.

Answer 4.B)

1. Using the `del` Statement : -The ` del ` statement is a straightforward and
commonly used way to remove a specific key-value pair from a dictionary. You can
use it by specifying the key you want to delete . For example , `del my_dict['key']`
will remove the key `' key '` along with its associated value from the dictionary
`my_dict`. You can also use ` del ` to delete the entire dictionary by using `del
my_dict`.
2. Using the `pop(key)` Method : - The ` pop(key) ` method is another method
for deleting elements from a dictionary . By providing the key as an argument, this
method removes the corresponding key - value pair and returns the value associated
with the key . It ' s useful when you want to both remove an item and retrieve its
value in one step. For example, `value = my_dict.pop('key')` removes the key ` ' key
'` from ` my_dict ` and assigns its associated value to the variable `value`. If the key
is not found in the dictionary, a KeyError will be raised, so it's advisable to provide
a default value as a second argument, like `my_dict.pop('key', default_value)`.
3. Using the `popitem()` Method : - The `popitem()` method is a unique way to
delete elements from a dictionary. It removes and returns the last key-value pair
from the dictionary as a tuple. In Python 3.7 and later versions, dictionaries are
guaranteed to maintain insertion order, which means that the " last added " item will
be removed. While this method might not be suitable for situations where you need
to specify a specific key to delete , it can be handy when you want to remove and
process items in a sequential manner.
4. Using the `clear()` Method : -The `clear()` method provides a way to delete all
key - value pairs from a dictionary , effectively making it an empty dictionary . This
method is useful when you need to reset or clear the entire dictionary while retaining
its structure .
In summary, Python offers several methods to delete elements from dictionaries,
allowing you to manage the contents of dictionaries efficiently based on your
specific needs. Whether you want to delete a specific key - value pair , remove the
last item added , or clear the entire dictionary, these methods provide flexibility and
control over dictionary operations.

Question 5.A) Explain the difference between keyword arguments and
variable length function with example.

 Answer 5.A) Keyword arguments and variable-length functions are two important
concepts in Python that enhance the flexibility of function parameter passing,
making your code more readable and versatile. Here, we'll discuss the differences
between them without providing specific code examples.
Keyword Arguments:

Keyword arguments are a way to pass arguments to a function by explicitly
specifying the parameter names in the function call. This approach allows you to
provide values for specific parameters in any order, making your code more self-
explanatory and less error-prone.

 With keyword arguments, you can:

 Specify which parameter receives which value, enhancing code readability.
 Skip optional parameters by providing values only for the parameters you

want to set.
 Use default values for parameters that are not provided in the function call.

Keyword arguments are particularly useful when dealing with functions that have a
large number of parameters or when you want to make your code more explicit and
easy to understand.
Variable-Length Functions:
Variable-length functions, often implemented using *args for positional arguments
and **kwargs for keyword arguments, allow you to pass a variable number of
arguments to a function without explicitly specifying their names.
With variable-length functions, you can:

 Handle an arbitrary number of arguments, which can be beneficial for
functions with varying input requirements.

 Create more flexible and generic functions that can accept different
numbers of arguments.

 Process arguments in a way that doesn't depend on the parameter names.

 Variable-length functions are commonly used in situations where you want to
build functions that can adapt to different use cases, such as mathematical
operations, data processing, or creating custom utilities.

In summary, keyword arguments and variable-length functions offer different
advantages and use cases in Python. Keyword arguments provide clarity and
readability in function calls by specifying parameter names explicitly, whereas
variable-length functions enable you to work with a variable number of arguments,
offering flexibility and adaptability in your code. The choice between them
depends on your specific requirements and coding style, but understanding both
concepts is essential for writing effective and maintainable Python code.

Question 5.B) Write a program to create user defined exception and raise
it.
 Answer 5.B) In Python, you can create custom exceptions by defining a new
class that inherits from the built-in Exception class or one of its subclasses. Here's
an example of how to create a user-defined exception and raise it in a program:

1. In this program: -We define a custom exception class called
MyCustomException, which inherits from the built-in Exception class. You
can provide a custom error message when initializing an instance of this
class, or it will default to "This is a custom exception."

2. We create a function divide_numbers(a, b) that attempts to divide two
numbers a and b. If b is equal to zero, it raises our custom exception
MyCustomException.

3. In the try block, we call the divide_numbers function with a numerator of
10 and a denominator of 0, which triggers the custom exception.

4. We catch the custom exception using an except block for
MyCustomException and print the custom error message.

5. Additionally, we have a separate except block to catch the built-in
ZeroDivisionError that might be raised if the denominator is zero. This
demonstrates that our custom exception is distinct from the built-in
exceptions.

 # Define a custom exception class by inheriting from Exception
class MyCustomException(Exception):
 def __init__(self, message="This is a custom exception"):
 self.message = message
 super().__init__(self.message)
def divide_numbers(a, b):
 if b == 0:
 # Raise the custom exception when attempting to divide by zero
 raise MyCustomException("Division by zero is not allowed")
 return a / b
try:
 numerator = 10
 denominator = 0
 result = divide_numbers(numerator, denominator)
 print(f"Result: {result}")
except MyCustomException as e:
 print(f"Custom Exception: {e}")
except ZeroDivisionError as e:
 print(f"Zero Division Error: {e}")

Program Output look like
 Custom Exception: Division by zero is not allowed

Question 6.A) Write a program to implement any(), all(), sum(), min(),
max(), bool(), bytes() functions. Explain their uses also.

 Answer 5.A)

1. The any() function checks if at least one element in the numbers list is True
(non-zero). It returns True because there are non-zero elements.

2. The all() function checks if all elements in the numbers list are True. It
returns False because there's a "falsy" value (0) in the list.

3. The sum() function calculates the sum of all elements in the numbers list,
resulting in a sum of 15.

4. The min() function finds the minimum element in the numbers list, which
is 0.

5. The max() function finds the maximum element in the numbers list, which
is 5.

6. The bool() function converts the numbers list to a Boolean value. Since the
list is not empty, it returns True.

7. The bytes() function converts the byte_values list, containing ASCII values,
into a bytes object, resulting in b'Hello'.

These functions provide valuable tools for working with iterable data and
performing common operations like checking for truthiness, calculating sums, and
finding minimum and maximum values. The bytes() function is especially useful
for handling binary data.

 # Define a list of numbers
numbers = [1, 2, 3, 4, 5, 0]
1. any() function: Checks if at least one element in the iterable is True.
any_result = any(numbers)
print(f"Any result: {any_result}") # Output: True (because there are non-zero
elements)
2. all() function: Checks if all elements in the iterable are True.
all_result = all(numbers)
print(f"All result: {all_result}") # Output: False (because 0 is a "falsy" value)
3. sum() function: Calculates the sum of all elements in the iterable.
sum_result = sum(numbers)
print(f"Sum result: {sum_result}") # Output: 15 (sum of all elements)
4. min() function: Finds the minimum element in the iterable.
min_result = min(numbers)
print(f"Min result: {min_result}") # Output: 0 (the minimum element)
5. max() function: Finds the maximum element in the iterable.
max_result = max(numbers)
print(f"Max result: {max_result}") # Output: 5 (the maximum element)
6. bool() function: Converts a value to a Boolean (True or False).
bool_result = bool(numbers)
print(f"Bool result: {bool_result}") # Output: True (because the list is not empty)
7. bytes() function: Converts an iterable of integers (0-255) to a bytes object.
byte_values = [72, 101, 108, 108, 111] # ASCII values for "Hello"
bytes_result = bytes(byte_values)
print(f"Bytes result: {bytes_result}") # Output: b'Hello' (a bytes object)
Note: The bytes() function is often used for encoding text data in binary format.

Program Output look like
Min result: 0
Max result: 5
Bool result: True
Bytes result: b’Hello’
 Question 6.B) Explain the use of pandas, numpy and matplotlib libraries with

example.

 Answer 5.A)
import pandas as pd

Create a DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
 'Age': [25, 30, 35]}

df = pd.DataFrame(data)

Display the DataFrame
print(df)

 import numpy as np
Create a NumPy array
arr = np.array([1, 2, 3, 4, 5])
Perform array operations
mean = np.mean(arr)
std_dev = np.std(arr)
Display results
print(f"Array: {arr}")
print(f"Mean: {mean}")
print(f"Standard Deviation: {std_dev}")

 import matplotlib.pyplot as plt
Create data for a simple line plot
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]
Create a line plot
plt.plot(x, y)
Add labels and a title
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Simple Line Plot')
Display the plot
plt.show()

 These examples showcase the basic functionality of each library: creating
DataFrames in Pandas, performing numerical operations with NumPy, and creating
a simple line plot using Matplotlib. These libraries are versatile and can be used for
much more complex tasks in their respective domains.

